If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4.25x-36.125=0
a = 1; b = 4.25; c = -36.125;
Δ = b2-4ac
Δ = 4.252-4·1·(-36.125)
Δ = 162.5625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4.25)-\sqrt{162.5625}}{2*1}=\frac{-4.25-\sqrt{162.5625}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4.25)+\sqrt{162.5625}}{2*1}=\frac{-4.25+\sqrt{162.5625}}{2} $
| 3(v+3)-7=11 | | 4m=8m-3 | | 12x+41=101 | | -432=-6(8x+8) | | -2x-8+5x=19 | | 2g+2(-6+3g)=1-g | | 114=6(1+6x) | | 78=5n+3 | | (r÷20)+120=122 | | 7j+2=-40 | | 2(n-4)=3(n+4)2n-8=3n+12 | | x+121+40=180 | | 27(x+7)=-21(x-9) | | -100=-4(1-6x) | | -8(1-4x)=-164 | | 6x-8=2x-104 | | 10x*12x=x | | 95=35+3a | | (x+1)x3=3+x+6 | | -7x-8(7+2x)=-125 | | 3x+10x-4+2x+4=180 | | 5v=409 | | 65+83+x=180 | | 2x+2(-6+3x)=1-x | | 2+5(7x-1)=172 | | y3+17=19 | | 3x-1.75=3(x-1) | | 97+40+x=180 | | -7(5+8x)=-147 | | (x+90)+7=180 | | h/6-1=h | | -2+1-5n+7=-7n-6 |